Топ-10 лучших книг о Data Science в 2024 году
Представляем самые популярные учебники и самоучители для начинающих и продвинутых специалистов в области Data Science.
В эту большую и все время расширяющуюся профессиональную сферу входят специалисты по машинному обучению, Deep Mining и созданию нейросетей, Data-инженеры и аналитики Big Data.
Джоэл Грас. “Data Science. Наука о данных с нуля”
Книга позволяет изучить науку о данных (Data Science) и применить полученные знания на практике. Она содержит краткий курс языка Python, элементы линейной алгебры, статистики, теории вероятностей, методов обработки данных. Приведены основы машинного обучения. Описаны алгоритмы k ближайших соседей, наивной байесовой классификации, линейной и логистической регрессии, а также модели на основе деревьев принятия решений, нейронных сетей и кластеризации. Рассмотрены приемы обработки естественного языка, методы анализа социальных сетей, основы баз данных, SQL и MapReduce.
Во втором издании примеры переписаны на Python 3.6, игрушечные наборы данных заменены на «реальные», добавлены материалы по глубокому обучению и этике данных, статистике и обработке естественного языка, рекуррентным нейронным сетям, векторным вложениям слов и разложению матриц.
Для аналитиков данных.
Анналин Ын, Кеннет Су. “Теоретический минимум по Big Data. Всё что нужно знать о больших данных”
Cегодня Big Data – это большой бизнес.
Нашей жизнью управляет информация, и извлечение выгоды из нее становится центральным моментом в работе современных организаций. Неважно, кто вы – деловой человек, работающий с аналитикой, начинающий программист или разработчик, «Теоретический минимум по Big Data» позволит не утонуть в бушующем океане современных технологий и разобраться в основах новой и стремительно развивающейся отрасли обработки больших данных.
Хотите узнать о больших данных и механизмах работы с ними? Каждому алгоритму посвящена отдельная глава, в которой не только объясняются основные принципы работы, но и даются примеры использования в реальных задачах. Большое количество иллюстраций и простые комментарии позволят легко разобраться в самых сложных аспектах Big Data.
“DAMA-DMBOK. Свод знаний по управлению данными“
Главная задача книги – определить набор руководящих принципов и описать их применение в функциональных областях управления данными. Издание всесторонне описывает проблемы, возникающие в процессе управления данными, и предлагает способы их решения. В нем подробно описаны широко принятые практики, методы и приемы, функции, роли, результаты и метрики.
«DAMA-DMBOK: Свод знаний по управлению данными. Второе издание» предоставляет специалистам по управлению данными, ИТ-специалистам, руководителям, преподавателям и исследователям обширный материал для совершенствования работы с информационными активами и корпоративными данными.
Р. Зыков. “Роман с Data Science. Как монетизировать большие данные”
Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля аналитики в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
Брендан Тирни, Джон Келлехер. “Наука о данных. Базовый курс”
Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
Жаклин Нолис. “Data Science для карьериста”
Все мы хотим построить успешную карьеру. Как найти ключ к долгосрочному успеху в Data Science? Для этого понадобятся не только технические ноу-хау, но и правильные «мягкие навыки». Лишь объединив оба этих компонента, можно стать востребованным специалистом.
Узнайте, как получить первую работу в Data Science и превратиться в ценного сотрудника высокого уровня! Четкие и простые инструкции научат вас составлять потрясающие резюме и легко проходить самые сложные интервью. Data Science стремительно меняется, поэтому поддерживать стабильную работу проектов, адаптировать их к потребностям компании и работать со сложными стейкхолдерами не так уж и легко. Опытные дата-сайентисты делятся идеями, которые помогут реализовать ваши ожидания, справиться с неудачами и спланировать карьерный путь.
Петер Флах. «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных»
Перед вами один из самых интересных учебников по машинному обучению – разделу искусственного интеллекта, изучающего методы построения моделей, способных обучаться, и алгоритмов для их построения и обучения. Читатель с первых страниц видит машинное обучение в действии, но без не нужных на первых порах технических деталей. По мере изучения предмета тщательно подобранные примеры, сопровождаемые иллюстрациями, постепенно усложняются.
В книге описан широкий круг логических, геометрических и статистических моделей, затрагиваются и такие находящиеся на переднем крае науки темы, как матричная факторизация и анализ РХП. Особое внимание уделено важнейшей роли признаков. Устоявшаяся терминология дополняется введением в рассмотрение новых полезных концепций. В конце каждой главы приводятся ссылки на дополнительную литературу с авторскими комментариями.
Благодаря всему этому книга задает новый стандарт изучения такой сложной дисциплины, как машинное обучение.
Дэви Силен, Арно Мейсман, Мохамед Али. “Основы Data Science и Big Data”
Data Science – это совокупность понятий и методов, позволяющих придать смысл и понятный вид огромным объемам данных.
Каждая из глав этой книги посвящена одному из самых интересных аспектов анализа и обработки данных. Вы начнете с теоретических основ, затем перейдете к алгоритмам машинного обучения, работе с огромными массивами данных, NoSQL, потоковым данным, глубокому анализу текстов и визуализации информации. В многочисленных практических примерах использованы сценарии Python.
Обработка и анализ данных – одна из самых горячих областей IT, где постоянно требуются разработчики, которым по плечу проекты любого уровня, от социальных сетей до обучаемых систем. Надеемся, книга станет отправной точкой для вашего путешествия в увлекательный мир Data Science.
Билл Фрэнкс. “Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики”
Еще несколько лет назад руководители многих организаций, чей бизнес генерирует большие объемы операционных данных, сомневались в ценности подхода Big Data. Сегодня те из них, кто продолжает сомневаться, упускают непрерывно растущие возможности этого подхода, повышая риск потери доли рынка и перехода в разряд отстающих и устаревающих.
Но с чего начать, если вы хотите вывести свою организацию на новый научно-технологический уровень, к принятию решений с использованием Big Data? Ответ на это дает Билл Фрэнкс, директор по аналитике компании Teradata и преподаватель Международного института аналитики, за плечами которого – более чем 20-летний опыт работы в крупных аналитических проектах реального бизнеса.
«Революция в аналитике» – это пошаговое практическое руководство по внедрению операционной аналитики и автоматизации принятия решений. Специалисты по аналитике, ИТ и все, кто хочет сделать свою организацию успешнее на основе подхода Big Data, по достоинству оценят работу Фрэнкса.
Никита Сергеев. “Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев”
Когда люди не инженерных специальностей слышат «аналитика и Data Science», то представляют разное. Кто-то видит таблицы и графики. Кто-то неподъемно сложные математические формулы. Кто-то программирование и искусственный интеллект… Но истоки этих понятий из области статистики, которая делится на описательную и аналитическую. И эта кажущаяся непостижимой аналитика — на самом деле нескучная, интересная и простая вещь. Чтобы ею пользоваться, не нужно ни изучение сложных формул, ни программирования…